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The criterion of stability of steady flow of a perfect incompressible fluid bound- 
ed by solid walls, indicated by Arnol’d [l, 21, is extended to the case when a 

part of the flow region boundary is free and subjected to surface tension. 

The method used in [l, 23 is a variant of Liapunov’s second method and is close to 
Chetaev’s method of bunching integrals [3] which was applied in [4] for investigating 
the stability of motion of a solid body with a cavity partly filled with fluid in potential 
motion. The Helmholtz - Thomson theorem on vortex conservation implies the 
existence of invariant foliation (Helmholtz foliation) in the considered dynamic system. 

Critical points of the energy functional on the layers of such foliation correspond to 

steady flows and, if the critical point is a nondegenerate maximum or minimum, the 
respective steady flow is stable. This shows that the property of fixed sign of some 

quadratic functional, i. e. of the second variation of energy on a Helmholtz layer, is 
the criterion of stability. 

The general criterion of stability is applicable to parallel flows over a solid bottom 
and to circular flows. It appears that a convex profile of a stable flow must monotonic- 

ally increase from the solid wall to the free surface, while a concave one must mono- 
tonically decrease. 

l. The dynamic system aod invariant foliation. Let 
D (t) be a region dependent on time t of the three-dimensional space R3 with 

smooth boundary r (t) filled with a perfect incompressible fluid subjected to the 
action of potential mass forces of potential U (t). Boundary I’ (r) consists of a 

stationary solid wall ri and of the free boundary rz (r), which do not intersect at 

any t . In this case the velocity v (5, t) and pressure p (z, t) in region D (t) 
satisfy at all t Euler’s equations (in the Gromeka - Lamb form) and the boundary 

conditions 

dv / dt + v x r - grad q, r = rot v, q = u + p + l/s 73 (1.1) 

div v = 0 

U% (22, t) = vn = 0, 5 E rl. un (z, t) = x, 

2 E r2 (t), p (z, t) = 20 H (x, t) 

where o > 0 is the surface tension coefficient and H is the mean curvature of 
surface r 3 (t) at point z , expressed in terms of the principal curvature radii by 

the formula 
H = iis (1 I R, + 1 / R,) 
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where Ri and & are assumed positive when directed inward region D (t), n 
is the unit vector of the outward normal of the region boundary, and x, is the norm- 

al component of the velocity of a boundary point. 
A theorem on the existence of solutions of the input boundary value problem for 

system (1.1) is not known. We assume that equations that correspond to weak pertur- 
bations of stable steady flows exist at all t E IO, oo). 

We denote by il!f the set of pairs (D, v), where D is the region with a smooth 
boundary whose part is ri and v is a smooth (up to the boundary) vector field in 

D , with U, (2) = 0 and 2 E I’r (here and in what follows the term “smooth” 
means infinitely differentiable). Equations (1.1) define in 1)I a dynamic system. 

Extending the definitions in [l] we call the elements (D, v) and (D’, v’) from 

ikf irrotational if there exists a smooth mapping g of region D into region D’ 
such that gri = ri which retains a volume element, and such that for any closed 
contour y in region D 

$vdx = $v’dx 
Y 

The (Helmholtz) foliation in M , i. e. the subdivision into equivalence classes 
is thus specified: two elements belong to one and the same layer when and only when 
their vorticities are the same. 

Theorem 1. If v(z, t) satisfiesEqs.(l.l)inregion D(t) atall tE 
(- 6, 6), where 5 (t) is the fluid particle trajectory, then (D (0), v (x, 0)) and 

(D (0, v (2, r)) h ave the same vorticity and the mapping g converts 2 (0) into 

x (0. 
The Helmholtz - Thomson theorem on vortex conservation, as formulated in Cl], 

shows that the foliation defined above is invariant for the dynamic system in M , 

determined by Euler’s equations. 

2. The first and second variations of elements 
from 31 along the H e 1 m h o 1 t z 1 a y e r s. The one-parameter set 

(D (T), v (x, 7)) determinate for 1 ‘t 1 < 6 and such that 1) the set ((5, T): s E 

30 in), I ‘t I < 6) is a smooth submanifold in R” X (- 6, 6) and 2) u (x, r) 

= (v (x, r); 0) is a vector field in region {(z, r): 5 E D (T), 1 ‘t ( < S} smooth 

up to the boundary, will be called smooth curve in M . 
If the smooth curve (D (T), v (x, T)) is entirely contained in layer F of the 

invariant foliation, then, according to the definition of equal vorticity elements, 
there exists a one-parameter set of smooth mappings gz : D (0) --t D (a) which 

retain the volume element and are such that for any contour Y C D (0) 

$ v (x, 0) dx = $ v (x, T) dx (2.1) 
Y g,y 

Let (0, v) be an element from M . According to Weyl’s expansion [41 v 

can be represented in the form 

v = vi -I- vs, div v1 = div V, = 0, uln (x) = 0, x E 80 (2.2) 

vs = grad a, z+n(x) = v,(x)), sE 6’0 
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Roughly speaking, vr is the rate of internal mixing of the fluid and vz relates 
to the flow induced by variation of the free surface. 

Velocity variations along curve (D (.c), v (x, IG)) are, in conformity with (2.2), 
of the form 

6v = 6v, + 6vs, 6% = Pv, + Pv, 

Let the set gz from (2.1) be determined by gc (x (0)) = z (z), where x (7) 
is the solution of the system of ordinary differential equations 

dx / dT = f (x, T.) 

where f (5, T) is the smooth solenoidal vector field specified in some neighborhood 
of D at 1 z I< 6 such that div, f (x, T) = 0, fn (2,~) = 0, x E rl. 

L e m m a 1. If the closed contour y C D and 

then 

$ vr(x, 0)dx = $ vI(x, z)dx 

&‘Y Y 

C$ (vr (x, z) - v1 (x, 0)) dx = z $ f (x, 0) x r (x) da + 
Y Y 

+ $ (f (x, 0) x {f (x, O), r (4) 4 cp (x) x r (x)) dx + 0 (TV) 
Y 

where r (x) = rot v1 (z, 0), and {f (x, 0), r (x)} isthepoisson bracket of vect- 
or fields f (5, 0), r (x) and Cp (x) x (af (x, .t) / ~?a)~=~ . A similar lemma was 
proved in Cl] for the case of autonomous vector fields. The proof here does not greatly 
differ from that in [l]. 

C o r o 1 1 a r y. The variations of field VI are of the form 

6v, = (dv, (x, a) / d-c)rzzzo T= f S r + grad ar (2.3) 

iPv, = (a2\-1 (x, T) / drs)r=D =liz [t’ X {f, r) + ‘p x r] +grad o2 (2.4) 

div 6vr = div a2v, = 0 

(d [VI (gtx, .t) n (gTx, T)I / dt)r+, -= 0 

(d2 [v, (gtx, a) n (g,x, T)I / dT2)T,o -~= 0 

where xEaD, n(grx, 4 is the unit vector of the outward normal to ~30 (r) 
at point g,x, and a, and as are determined by the last three of Eqs. (2.4). 

Lemma 2. 

(2.5) 

(2.6) 
where PI and p2 are harmonic functions in D , for which boundary conditions 
are obtained by differentiating condition r n = X,, with respect to T at the boundary 
and, then, setting a = 0. 
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Let hz : D + D (‘6) (I z 1 < 6) be a one-parameter set of mappings that retain 
a volume element and are smooth over the totality of arguments (2, ‘I). We then 
call the normal vector field in ao 

the variation of the free surface form. The following lemma justifies this designation 
by showing that 6D depends only on the variation of the form of region D due to 

deformation of h, , and 6D = 0 when for small a D (7) = D . 
L e m m a 3. Let the two deformations hz’, ht2 : D * D (7) be specified, 

then 

P r o o f. Since the smooth surface (8D (T), T) can be specified in the neighbor- 
hood of any of its points in space R3 X R by the equation F (5, T) = 0, 1 grad, 

F (2, -c) 1 # 0 , hence 

where n (h Zig, r) is the outward normal to dD (.c) at point hti Z, i = 1, 2. 
Setting in (2.7) ‘t = 0 we obtain the proof of the lemma (see, also, [6D. 

The total energy of fluid is equal to the sum of kinetic energy, the potential energy 
of the mass force field and the surface potential energy of capillary forces. It is rep- 

resented by the functional E in ilf which is defined by the equality 

E= s (fvP+ “) dx+ 0 \; ds 

D(t) l%t, 

3. The variational principle and energy variat- 

i 0 n. Theorem 2. The solenoidal vector field v (x) represents the velocity 

of the steady fluid flow in region D then and only then when the energy E on the 

Helmholtz layer has a local extremum at point (D, v) . 

P r o o f. Let us determine the first variation of E at point (D , I). Using form- 
ulas for derivatives of integrals over a region [6] and a surface (see, e. g., [7,8] which 
depend on the parameter, from (2.3) and (2.5) with allowance for (1.1) we obtain 

(3.1) 

au 

s ’ (2oH - p)fndS = 0 
an 

Conversely, let 6E = 0 , then, setting f lTzo E 0 , we obtain 
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0 =i v grad &dx = 1 v,&dS 
BR 

which shows that vn = 0 in HI. 
For an arbitrary smooth solenoidal vector field f from (2.31, (2.5), and (3.1) we 

ikrthermore have 

0 = f(rxv+grad 
s 

(~+u+~~~)~~ 

u 

which in accordance with Weyl’s expansion implies the existence of function p (a~) 
such that 

r x v+grad(vaf2+ U)=--gradp,p(~)c)Z~H(~),sEdr) 

The theorem is proved. 

First of all we note that for normal variations N of the free surface I’a the mean 

curvature variation is defined by formula 

6H=(X-4Ha)N-- AN (3.21 

where ii: is the product of principal curvatures, A’ is the Laplace - 3eltrami operat- 

or of surface r.2 (see, e, g., [Sl), We continue the mean curvature of ET (5, T) as 
a function defined on surface (a0 (‘c), T) (1~ I< 6) in R4 into some neighborhood 

of that surface in R4 . Taking into account that in (3.2) according to Lemma 3 

N = fn and using formulas for integration of integrals over a region and surface de- 
pendent on parameter Z , from (2.4) and (2.6) we obtain 

2d2E = IIds+ s (Jr+ J2)dS 
13 OD 

/ = (f x r -+ grad C@ _t (grad p$ i_ (V x f) {f, T) 

JI = (2~ (f X r + grad (aI + I%>> + grad (v” / 2 + U) f)fn 

Jz = fndHs (f) + 0 ((GfJ2 + (2K - 4H2) (frJ2 

(3.3) 

Note t&t for f,- 0 in aD and PI = 0 in D formula (3.3) coincides with 
formula (5. lf in [l] in the case of flow of fluid in a container with solid walls. Thus, 

a stable steady flow with a free surface remains stable when a solid wall is substituted 

for the free surface (the principle of hardening). 

4. Stability of symmetric flow& Letthesolidwall rI 
and the potential U be invariant to translatims along the OS, -axis, We shall 
consider such motions of the fluid for which the free boundary r,(t) and the velocity 
field are periodic with reqect to x1 and of fixed period I _ The equations of 

motion then admit the integral 
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where S (x1, t) is the cross section of region D (t) cut by a plane orthogonal to 

Ox, passing through point (x1, 0, 0), and e,, es, es are coordinate unit vectors. 
Similarly, if the solid wall l?i and the potential u are invariant with respect 

to rotation about the Ox, -axis, Euler’s equations (1.1) - (1.3) have 

&= SC v x R) e3 dx, R = (XI, 52, ~3) 
D (0 

as the integral of the momentum of motion. 
T h e o r e m 3. The functional L, on the Helmholtz layer has an extremum 

at point (D, v) then and only then when v is the velocity of steady flow in region 
D invariant with respect to translations along the Ox, -axis. 

Theorem 4. The functional K on the Helmoltz layer has an extremum at 
point (D, v) then and only then when v is the velocity of steady flow in region D 
that is invariant with respect to rotation about the Ox, -axis. 

The proof of these two theorems is the same as the proof of Theorem ‘2. 
For the second variations of L, and K along the Helmholtz layer we have 

.2iYLf= 5 S (elxf){f,r)ds+i 1 [2eL(fxr+ 
0 SW 0 Wrd 

grad (aI + r6d) + grad (vex) fl fn dS 

262~~ = S(Rxe3xf){f,r}dJ:+ s [2(fxr+grad~al+B1))Re,+ 
D 6D 

grad ((v x R) es) f] fn dS 

We thus obtain, as in [l], the following sufficient condition of stability of steady 
flows of perfect incompressible fluid with a free boundary. 

T h e o r e m 5. If the linear combination of second variations 

pih2E + ~26~L, + I+,~~K, 
(4.1) 

taken along the Helmoltz layer exists and is a fixed sign, quadratic form of f the 
steady flow in region D at velocity v is stable with respect to small finite perturbat- 

ions of velocity v I vortex r , and of the free surface form. 

5. Examples. Let us investigate the stability of some steady plane flows of 
a perfect incompressible fluid with a free boundary with respect to plane perturbations. 

Note that for the velocity v of a steady plane flow and any plane vector field f 

r(5)=(0,0,r@)), 6r={f,r)-~~l++212 

1”. Stability of plane-parallel flows. Letusinvestigate 
the stability of a parallel flow whose velocity field in the horizontal layer D = {(q, 

4: - co < "I< 00, 0 < xa d a) is v (x) = (u [xa),O) , with I’i = {(xi, 0): - 
00 < xl < CO} representing the solid wall and I’, = {(xi, a): - 00 < xi < m} the 

free boundary. The fluid layer is assumed to be subjected to the force of gravity of 
potential U = gXa. 
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Setting in (4.1) p1 = 2, it2 = - 2rr (a), pg = 0 we obtain 

For the quadratic form (5.1) to be positive definite it is necessary and sufficient 
that the condition 

is satisfied. 
The theory of oscillation of solutions of second order differential equations shows 

that inequality (5.2) is satisfied only in two cases: 

1) U” {zs) > U, u (%) > u (a) , and 
2) ufl (Q) < 6, U (2’2) .< II (a) , 

In the first case function ti (Q) is concave and monotonically decreases, while in 
the second it is convex and increases monotonically. 

Let us consider the case of a < o which corresponds to the flow of fluid over a 

ceiling. If, as previously, we set in (4.1)Pl = 2, PZ = - 2~ (a),Ps=O,theflowis then 
stable when condition (5.2) is satisfied and in addition o > g12 / (4~7. 

2”. Stability of flows along concentric circles. 
Let us investigate purely rotational flows in ring D = 1(x1, %f : 0 G P % b) @ = 
VZ~ -+ rz2) : cp = 0, t‘e L- Q (p) , Let FI = f&, us): p = b} and i’s = ((z~, z-s): 

p = a} be the solid wall and the free boundary, respectively; 0 (p) = 7‘” (iJ) / p be 
the fluid particle angular velocity, and II, (p) be the stream function of the basic flow. 

We set in (4.1) IL1 = 2, p2 -- U, and 11s =. - 20 (a). As the result we obtain the 

stability condition of the form 

(grad $ -- ‘is w a grad 2’) /’ grad I’ & U (5.3) 

Condition (5.3) is exactly similar to condition (5.2). and determines similar profil- 

es of stable flows. However in this case we take r2 as the solid wall and I‘, as 
the free boundary. 

If we set in (4.1) PI := 2, ps y= 0, and b’s == - 20~ (6)) we obtain a stable flow 

when (5.3) is satisfied and in addition o > L” (0’) (0). 
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